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Geometry of approximant structures in quasicrystals 
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Abstract. We present a specific geomeuic description of the approximant phases in quasicrystals 
using a classification based on symmetry arguments. We derive the ‘shear’ technique as a special 
case of this description and discuss the cases of periodic approximmts. 

Observing that all presently known approximant phases have high point symmetry, we 
make the conjecture that these phases are stabilized by a ‘lock-in’-like phenomenon based on 
maximizing the number of easy atom flips. 

1. Introduction 

All presently known stable quasicrystals are crucially sensitive to chemical composition. 
Their equilibrium phase diagrams show in the vicinity of their stability region several closely 
related complex intermetallic phases called ‘approximant structures’. Most of these phases 
have been recognized as 3D periodic structures with large unit cells. They exhibit diffraction 
patterns very similar in intensity and peak positions to those of the parent quasicrystalline 
phase (see, for instance, [l]). Their physical properties are so close to those of the parent 
quasicrystal that it is often impossible to experimentally distinguish between approximants 
and quasicrystals but by high resolution diffraction experiments. Electron microscopy 
images strongly suggest that the local packing of these appmximants resembles closely 
that of the quasicrystal, the ‘quasicrystalline’ effect being observed only at large distances. 

From the geometric point of view, the similarities between these phases have a 
straightforward explanation: quasicrystals can be considered as ‘interpolation’ between 
crystalline phases or as the limit of sequences of crystals with increasing unit cells exactly 
as irrational numbers are limits of sequences of rational numbers. 

Incommensurate and quasicrystalline phases are best described in the framework of n- 
dimensional crystallography [Z-SI. In that scheme, atoms are represented by periodicalIy 
spaced (n - 3)-dimensional manifolds transverse to the physical 3D space. The real 
incommensurate or quasiclystalline phase is obtained by simply intersecting this N- 
dimensional object by the 3D physical space. Approximants are thus generated by 
choosing a cut space in a ‘direction’ close to the original one used to generate the parent 
quasicrystal [ G I :  it is this ‘direction’ which characterizes the approximant and which 
must be determined from the experimental data. This technique has been implemented 
in the framework of the strip (or cut-and-project) method [9-131 by Duneau [14] who 
introduced an ‘oblique’ projection of the lattice nodes (inside the strip) onto the physical 
space and has shown to be very efficient as exemplified by Duneau and co-workers 1151 in 
the case of the octagonal tiling. 

Ishii [16-18] calculated the possible cut ‘directions’ by defining n-dimensional rotation 
matrices as functions of the point symmetry group of the approximant in an exhaustive 
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study based on irreducible representations in group theory. This very general approach 
is extremely useful for determining which kind of irreducible representations should be 
considered when a symmetry breaking of the quasicrystal occurs. A very detailed and 
complete analysis of these rotation matrices is given by Baake [191 and Kramer 1201 and 
applied to defining approximants. 

An earlier approach was proposed several years ago by Jaric and Mohanty [SI in a 
slightly different context, based on the idea that an approximant phase can be looked upon 
as the result of a homogeneous ‘shear’ of the underlying hyperspace lattice, which we denote 
by A. The essence of the method consists in assuming that certain rational lattice directions 
of A can be aligned with the parallel space denoted by Ell. under a shear transformation. 
Obviously, as for any geometric analysis, no physical scheme of the elementary mechanisms 
should be directly deduced from this shear picture, but it shows explicitly which atoms 
should move to lead to the approximant phase and predicts the geometric relationships 
which should be observed between the two phases. After the initial work of Jaric and 
Mohanty [SI, the ‘shear’ method was implemented and used in real cases by Yamamoto and 
Ishihara [21,22], Jaric and Qiu [23] and Janssen [24]. This method tumed out indeed to be 
extremely efficient and accurate for predicting the lattice parameters of the possible periodic 
approximants. As well as its simplicity, the method is very economical for calculating the 
diffraction patterns of the approximants. 

Our present purpose is to construct a simple specific formulation that can be directly 
used by diffractionists for analysing real cases. Real quasicrystals and tilings share some 
basic properties which are due to one fundamental feature: they both are described with 
‘flat’ atomic surfaces [25]. Therefore, real quasicrystals exhibit only a finite number 
of different atomic environments (up to a given distance) out of which specific atomic 
clusters can be extracted to exemplify the structure. Also, the atomic positions of real 
quasicrytals can be viewed (generally, in  several ways) as a quasiperiodic tiling generated 
with a finite number of prototiles. Although strip@) and cut are equivalent for describing 
quasicrystals with flat atomic surfaces, we choose the cut method because it is the most 
natural description of quasiperiodic objects in the sense that it is the closest to the very 
definition of quasiperiodicity, the simplest for discussing symmetry arguments in the high 
dimension space and the easiest for linking quasicrystals to incommensurate phases. 

As well as this general goal, we will emphasize the special case of the ‘periodic’ 
approximants because of their practical importance (see, for instance, [I, 26-30]). Periodic 
approximants, by their very definition, do not require the high dimension space formalism 
for their description. However, this formalism is useful: it allows us to define in a unified 
way whole families of approximant periodic structures corresponding to a single direction of 
the cut, for which each family is parametrized by a discrete version of the ‘phason’ degree 
of freedom associated with translations in the perpendicular space. As we shall see, it is 
possible to single out special approximants characterized by the perpendicular space position 
of the associated cuts. We wish to discuss in some detail this ‘lock-in’ process because of 
its importance in the geometrk description of quasicrystaVcrysta1 phase transformations. 

The paper is organized into three main sections. In the first section, we present the 
geometric method we use to construct quasiperiodic structures in a way suitable to easily 
separate the effect of the distortion of the atomic surfaces (the so-called ‘phonon’ field) 
from the effect of tilting the direction of the cut space (the so-called ‘phason’ field); the 
second section introduces symmetry arguments for constructing a classification scheme of 
the various possible approximants in connection with the shear method; the third section 
discusses the method for the specific case of periodic approximant phases. 
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2. Geometric characterization of approximant phases 

We designate by approximant, a (quasiperiodic or periodic) structure with a diffraction 
pattern ‘close’ to the diffraction pattern of a given high symmehy quasicrystal, from both 
points of view of peak locations and intensities. The high symmetry quasicrystal will be 
called hereafter the ‘parent quasicrystal’. Under these definitions, an approximant.phase is 
not necessarily periodic in one or several directions. 

2.1. Algorithm of construction 

As already mentioned, we start from the original cut method as introduced for quasicrystals 
by Bak [4,5] after the pioneer work of de Wolff 12.1 and Janner and Janssen [3]. 

For our specific purpose of using ‘flat’ atomic surfaces, the simplest cut algorithm 
consists in copying in R” a prototypic ‘atomic surface’ u-which is a bounded volume of 
a (n - dll)-dimensional vector subspace noted El-at each node of a lattice A in JP and 
selecting their intersection with a cut space, say Ell, of dimension dll (the physical space) 
perpendicular to the atomic surfaces and irrationally oriented with respect to A. We only 
need a slight generalization of this initial algorithm to generate approximant phases. (i) The 
atomic surfaces U ,  which are still supposed to be flat, are no longer necessarily parallel 
to E l ;  we denote by E, the space carrier of the atomic surfaces. (ii) We introduce an 
intermediate cut space E,, which will be used to collect the points defining the atomic 
positions in the final structure, that is no longer necessarily parallel to the physical space 
Ell. We designate by d l  = n - dll the dimension of the perpendicular spaces EL and E,’. 
We assume that E,, and E1 have the same dimension and that E, and E, are properly 
oriented with respect to Ell in the sense that E,, is transverse to E, which, in turn, projects 
one-to-one onto El along E l .  

To generate the structure, we proceed in the following way. (i) We copy the prototypic 
atomic surface U at each lattice node (the method generalizes trivially to several atomic 
surfaces per unit cell). (ii) We then take the intersection of these surfaces with E,. (iii) 
Finally we project the collected points onto Eli along El  (see figure’l). This technique of 
using both a cut und a projection is, to some extent, arbitrary but it has the advantage of 
both separating the displacement field from the flip field (see next subsection) and leading 
to a simple formulation for the Fourier transform. 

We can compute the mass density p associated with the final structure. For that purpose, 
we introduce the following. notations. A is the n-D lattice, bearing one Dirac 6 at each 
vertex; q = q,, 8 S o E ~ ~  is the measure carried by the atomic surface cr: it is the product 
of the characteristic function qr within E,, (qo takes value 1 inside the atomic surface and 
0 outside) by a Dirac 6 located at the origin of E:; d x ~ ,  = IS, 8 is the Lebesgue 
measure carried by the subspace Ej. 

Now, we follow the geometric construction. ~(i) The prototypic atomic surface is copied 
at each lattice node of A; this is obtained by the convolution product A * q.  (ii) Next, this 
set is cut by E,; this leads to (A * q)  . d x ~ ~  (at that stage, we obtain a set of points in E,). 
(iii) Finally, we project this set of points in E, onto Ell: we copy El  at each point of this 
set by the convolution ((A * q) . dx%) *&E, and take the intersection with Ell. 

All together, we obtain 

I* = (((A * a) . * d x ~ ~ )  ’ hq,. (1) 

The parent quasicrystal is defined by E,, = El  and E, =Ell. 
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Figure 1. The cut method extended to take into account 
both perpendicular and parallel displacements: the subspace 
E, carrying the atomic surfaces is no longer parallel to EL 
and the subspace E, collecting the intersection points is DO 

longer parallel to Ell neither perpendicular to E.. 

Rgure 2. Construction of the Fourier speetrum 
oMained by the extended cut method reciprocal 
vectors Q of A' are projected onto Er along E:'. 
The amplitude of the diffracted beam is calculated 
using the orthogonal projection of Q onto E:. 

The Fourier transform i;: is obtained by performing the following formal transformations: 

P - + E  

s-+6 
(. . .) ' (. . .) -+ (-) * (-.) 
(. . .) * (. . .) + (-). (-) 

&E -+ $SE* 

~ O E E  -+ &E* 

(. . .) 8 (. . .) + (-) 8 (-) 

where, as usual, sfar superscripts designate the various reciprocal spaces. Using these rules 
and noting that A = A*, 0 = To & dxEr, and = d x E j ~ . ,  we obtain the Fourier 
transform of the mass density (1): 

ii = (((A* . fin @ ~ B S ) )  * ' &E;) * &q. (3) 

The geometric interpretation of equation (3), shown in figure 2, is as follows. (i) We 
first take the value of the Fourier transform ;i of the characteristic function 7. using as the 
argument the projections of the nodes of A* along E,I* onto E,". (ii) Then, to obtain the 
carrier of the Fourier transform, we make the oblique projection of A* along E? onto E;. 
(iii) The final Fourier amplitude is obtained by multiplying the previous value of ?j by a 
correction term due to the fact that drEy is not perpendicular to &E;. 

The last convolution with &E; in (3) is here for consistency; it simply means that 
the Fourier transformation of a dll-dimensional object in an n-dimensional space has an 
(n - dll)-dimensional trivial extension in the complementary space. The Fourier transform 
actually observed in reciprocal space is the restriction in E; of (3), i.e. the whole expression 
truncated at the level of the last convolution with E;. 

This symbolic notation is very powerful in showing the main geometric features of the 
Fourier transform: (i) the locations of the peaks in the diffraction pattern depend only on the 
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direction of E,, imespective of the direction of E,; (ii) the intensities of the peaks depend 
on both E, and EE. 

Hence, the experimental determination of the direction of E, only requires the 
determination of the locations of the diffraction peaks with respect to those of the parent 
quisicrystal irrespective of their intensities. 

On the other hand, the determination of the direction of E, requires measuring both the 
locations and the integrated intensities of the diffraction peaks (or high resolution imaging if 
the atomic displacements are large enough to be observed). This is very similar to standard 
structure determination in usual crystals: the space group identification (irrespective of a 
possible inversion symmetry) is achieved by purely geometric analysis of the diffraction 
patterns (point symmetry and possible systematic extinction of certain reflections); the 
relative locations of the atoms are determined by a further quantitative analysis of the 
integrated intensities of the peaks. 

2.2. 'Shif' and ~ipip'felds 

A rational orientation of E, with respect to A generates a periodic structure (lD, 2D or 
3D): the resulting structure is a periodic collection of atomic clusters where atoms are in 
general at locations which are incommensurate with the lattice parameters. 

Modifying the direction of the cut space E, with respect to Ell, while keeping E, 
constant, results in a reshuffling of the atomic local configurations. This corresponds to the 
so-called 'linear phason' field which we prefer to designate here as the flip field because, in 
the present context, we do not refer to dynamical modes. It describes the set of collective 
flips of atoms which are needed to transform the given quasicrystal into the approximant 
structure. We notice that this description is only a geometric approach and does not refer 
to a specific physical mechanism in the transition. Indeed, although this geometric picture 
would suggest martensitic instabilities (see IS]) for characterizing these transitions from 
quasicrystal to approximants, all presently available experimental results clearly support 
long distance atomic diffusion processes. 

On the other hand, a rational orientation of E, leads to a quasiperiodic atomic selection 
of sites all belonging to a host (periodic) lattice: a tilt of E,, with respect to EL alters 
the relative distances between the atoms with no change in the topology of the local 
environment. This corresponds to the so-called 'phonon' field which, again, we prefer 
to call the 'shift' field since, here too, it refers to static distortions with no direct connection 
with lattice dynamics. These displacements of the atomic positions are linear functions of 
the coordinates of the lattice nodes of A in E,". 

A prescription must be given to define the distortions of the atomic surfaces of real 
quasicrystals under a shift or a flip field. 

The very possibility for defining these distortions relies on the so-called 'closeness 
property' of the atomic surfaces. Let us recall briefly the basic ideas of this 
hypothesis [31,32]. Consider the cut construction of any (quasi)periodic structure, and 
shift the cut: it is natural to require that, each time the cut leaves an atomic surface by 
crossing its boundary, then it enters a neighbouring atomic surface, in such a way that no 
atom appears nor disappears upon such a shift, but simply jumps from one position to a 
neighbouring one. For canonical tilings, this jump defines the local reconstruction known 
as a 'flip', and the closeness condition merely requires the same kind of local reconstruction 
to occur in any realistic description of quasicrystals. It should be emphasized that this 
closeness property is a basic feature of all the structures considered in this paper. In fact, 
thii property is necessary for the comparison between structures differing through a tilt of 
E, andor E, to make sense. 
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Figure 3. Deformation of the atomic surfaces of the parent 
qu3s iqr t ; l l  (0 ) :  undcr a Rip field (b)  md a shin field (c).  @) (C) 

From a geometric point of view, this constraint means that it is possible to add to the 
original atomic surfaces, new pieces linking together the boundaries of these atomic surfaces 
(and which may be loosely thought of as the possible trajectories of jumping atoms), in 
such a way that there are no longer boundaries for the set of 'completed' atomic surfaces. 
Moreover, the new pieces must be non-transversal to the cut so that they do not intersect it 
each time it is in generic position and nothing is changed in the structure. 

Now, the prescription for defining the distortions of the atomic surfaces under a shift or 
a flip field becomes obvious: we impose that the connections between neighbouring atomic 
surfaces remain the same, or in other words, that the topology of the completed atomic 
surface is left unchanged, as sketched in figure 3. 

The procedure is defined for a continuous set of directions of E, (or Eo) including 
those corresponding to periodic structures in Ell. It is equivalent, in the strip method, to 
defining the acceptance window as the projection of the hyperlattice unit cell onto E: 
for the generation of tilings called canonical tilings. Shift and flip fields with adequate 
distortions of the atomic surfaces are shown in figure 4. 

Figure 4. Atomic surface deformations from the 
parent quasicrystal (in broken lines on the top 
figure) under: (top) a shift field, and (bottom) a 
flip field. In both cases, the overall topology of 
the atomic surfaces has been kept invariant. 

Examples of resulting structures aTe exemplified in figure 5 for the case of the canonical 
octagonal tiling for some directions of E, and E,. 
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Figure 5. Examples in the octagonal tiling: (a) through a pure shift field the til& are distorted 
but ihey WMeCt as in the octagonal tiling: (b) through a pure Rip field the tiles have same shape 
but they connect differently than in the octagon+ tiling. 

3. Projectors and symmetries 

Our strategy consists in classifying the subspaces E,, Ec, E l  and Ell introduced in the 
previous section with respect to their symmetry properties: the set of all subspaces with 
the same dimension that are invariant through the action of a given point group, say H ,  
subgroup of the point group 0 of the parent quasicrystal defines the l-l-stratum in B. 

3.1. Symmetry strata 

Projection operators are linear maps that project the Euclidean superspace, R" onto the 
subspaces of interest (which we will denote by E,, where a, a generic symbol, stands for 
any of the symbols U ,  c,  I, 11, . . .). They can be represented by n x n real matrices H ,  of 
rank d, such that 

7G: =n, (4) 

and 

E,  = {F E R"; Ir, 5 = 51. (5) 

Equations (4) and (5)  do not determine the projector ze completely from its image E,, 
since the direction along which the projection is made is still free. In order to fix this 
relation, we use orthogonal projections, i.e. in this context, symmetric matrices: 

57, = ir,. (6) 

On the other hand, it is immediate from equations (4) and (5) that Z - H ,  is a projector 
which verifies ( I  - I&) . rr, = 0, so that it projects along E,  onto the subspace E,' 
orthogonal to E,. Observe that the dimension d, of E, is equal to the trace of the matrix 
H.2. 

Now, if we have the expression of n, as an n x n symmetric matrix with real entries, 
it is easy to build an orthonormal basis of Ea, I?, = {e:; j = 1,2 ,3 ,  . . . , &] by choosing 
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any d, columns of the n, manix and performing a standard Schmidt orthogonalization on 
this set. 

Let g E 'H be a symmetry operation of the hyperlattice A, in Itn. A subspace E is 
invariant through g if and only if g commutes with the projector n associated with E.  

In fact, for every t E Itn we have always n g c  E E,  and if g preserves E,  then 
grrt E E.  Thus, we have to verify ng - g n  = 0 on E.  But on E,  n is the identity and 
the result follows. 

Conversely, if n g  - g n  = 0, let us take .$ E E. Then we get gx: = g: = ng.$ E E, 
which shows that g preserves E. Therefore a subspace E is invariant through a certain 
point symmetry group 'H if and only if its projector commutes with the considered group, 
i.e. if the projector commutes with the generators of the group. The set of all projectors 
with trace d which commute with 31 corresponds to a family of subspaces of dimension d 
.which are invariant through the action of 31. This family is referred to as the stratum ET 
of d-dimensional subspaces defined by 'H and is associated with the set ny of projectors 
of trace d commuting with 'H: 

J C ~  = In, [n, 'HI = 0 Tr(n) = d}. (7) 

In general, the constraints induced by the relations (4)-(7) are not sufficient to define all 
the entries of the n matrices. The number of remaining independent parameters in n is 
the dimension of the stratum. This number can be a priori determined by group symmetry 
arguments as developed by Ishii [1&18]. 

Figure 6. Cutting the atomic surfaces aligned 
along EL by E. and projecting onto EN is 
equivalent to applying a shear to the hyperlattice 
that transforms Ec into Ell. 
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3.2. Derivation of the ‘shear’ method 

As mentioned in section 2.1, the shift field cannot be analysed by simple examination of 
the peak shifts. Since we are interested here only in the geometry of the structure (and the 
location of the diffraction peaks), we shall assume for simplicity that the atomic surfaces 
are parallel to E l  (i.e. E,, = E l ) .  It is clear (see fi@re 6) according to which description 
mode-active or passiveis  used, that introducing a cut space E, different from Ell and 
projecting onto Ell along E l  is equivalent to performing a linear shear of the lattice A 
along the perpendicular space that transforms E, into Ell. This is the basis of the ‘shear’ 
method. In order to explicitly calculate this shear transformation, we define as M..g where 
E,  @ Eg = PE”, the n x n matrices the rows of which are the coordinates of  the unit 
vectors of the subspaces E,  and Eg with dimensions respectively d, and dg = n -de. For 
example, the mahix M11.l in the icosahedral case (n = 6; dll = d l  = 3) is defined by 

These matrices are such that 

where xu denote the components of the orthogonal projections along Eel of e onto the 
subspace E. expressed in the bases B, (and similarly for B) .  

be the intersection point of E, with the affine subspace 
parallel to E l  passing through 6 .  The shear transformation from the given quasicrystal 
to the approximant phase consists in shifting the original vector e by -nlf as shown in 
figure I. 

Let e be a node of A and let 

(4 (b) 
Figure 7. Definition of ule variables used to characterize the shear. 

The vector 1 is defined by H,L< = 0 and xlc = nl&. Thus 
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so that C is given by 

C = Mit1Mn.L nil F 

-t" = -XI M[~L Mi1.1 nil. 

(11) 

and the shear transformation Y, defined by Tt = -XI(, can finally be written as 

(12) 

As expected, Y reduces to zero when the cut space E, is parallel to the physical space 
Ell. 

Now, expressing Y in the basis [all, BA] ,  we obtain 

-%I = --MII..LZL M;;;: MILL M;; Mll.Lrn M;;. (13) 

This product of matrices takes a simple form when written with blocks of submatrices. We 
denote by [. . . ] (dlxd2) submatrices with dl rows and dz columns. Let dll be the dimension of 
Ell and E, and d s  = n - du the dimension of EI and E$. We first note the kivial forms 

we can easily calculate M11.j. using the fact that 

As expected, the shear matrix E is a rectangular matrix dll xd1 because it relates components 
in one space (Eli) to components in the other space (EI). 
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Expressed in the {&, 0,) basis, a hyperlattice node 6 = {xll, XL} transforms under the 
shear into { x i ,  x i )  by the well known relations [21,23] 

x;  =xu 

x; = X I  - & , X I [  

4; =411 f l E 4 L  

4; = 4s. 

which, by Fourier transform, translates into 

The equation (19) shows that the explicit calculation of E is easily obtained by 
constructing the two matrices of scalar products of the unit vectors of E, with those of 
En and EL, then inverting the square matrix [ell . ec]<,jDx,jb) and finally performing the left 
product with [ e l  . e c ] ( d L x d n ) .  As already mentioned, a basis of dl unit vectors of E, is easily 
conshucted from any dll columns of the corresponding projector. 

To achieve the simplest form in the expression of the shear matrix E ,  it is convenient 
to choose the bases of En and EL consistent with the point s y m e h y  of the considered 
approximant (see appendix B). Let then RI/ and RJ. be two invertible square matrices of rank 
respectively dll and dL which relate two bases J3; = Rl1Bll and B i  = R l f ? ~  in respectively 
Ell and EL. The T matrix transforms then according to 

which leads to 

E' = RI, E RT'. (U) 

This equation shows how E transforms under changes of bases in either Ell or EL. In 
particular, since the transformation is obviously not a simple conjugation o f t ,  the trace of 
E changes upon changing the bases. 

There are cases where the calculation of & is particularly simple. Indeed, in many 
practical cases, the experimental data suggest choosing specific lattice vectors of A as 
generators of the unit cell vectors in El of the considered approximant. We take the 
practical example of dll = 3. We designate by {a. b, c) the three nodes of A which generate 
the unit vectors of the approximant phase. These three nodes define the cut space Ec. They 
project on Ell and EL as {(all, n l ) ,  (bll, bs), (q, CL)}. Equation (19) leads to the following 
&(drxB) matrix: 

QL.I bL,l CL,I 

(24) 
an.2 bii.~ CIIJ 

This simple equation (24) has been successfully used for determining specific cubic, 
rhombohedral, orthorhombic etc. series of periodic approximans of real quasicrystals (see, 
for instance, [33,34]). 
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4. Periodic approximants 

The case of (3D) periodic approximants is of special practical importance. We examine here 
two basic aspects of these phases in the framework of the ‘shear’ method just discussed. 
The first aspect is the characterization of the symmetry of the approximant (space group) 
as a function of the shear and the second aspect is devoted to the ‘degenerate’ approximant 
structures which will be defined later in this section. 

4.1. Symmetry of periodic approximants 

Although generic approximants of a given ‘H-stratum are quasiperiodic and have no strict 
point symmetry, their atomic correlations functions are invariant to any order through ‘H. 
This invariance property is due to the fact that the nodes of the ‘sheared‘ hyperlattice 
A’ project onto EL as uniformly dense ‘sheets’ of points which are invariant through 
E: any two structures obtained by parallel cuts differing only by translations in these 
dense sheets are locally isomorphic structures [12,35] and can be viewed as physically 
equivalent (see for instance [361). This feature breaks down for periodic approximants: 
the lattice A’ projects onto EJ. as a discrete set of points defining a lattice, say 21: 
the possible structures obtained by parallel cuts are either identical (superimposable) or 
crystallographically different depending on the location of the trace of E, in EL. 

To simplify the discussion, we restrict our attention to the simple case where A projects 
uniformly densely onto EL (i.e. we restrict our attention to one local isomorphism class 
of the parent quasicrystal). Also, we choose a parent quasicrystal which is defined by an 
unique prototypic atomic surface (the discussion can be trivially extended for structures 
with several atomic surfaces). 

Let us consider a periodic approximant belonging to a given ‘H-stratum where X is a 
subgroup of G obtained by the shear method. As discussed earlier, the initial atomic surface 
U with point symmetry G has been distorted under the shear in order to preserve the overall 
topology of the parent quasicrystal. We designate by U’ the distorted atomic surface which 
now has point symmetry X. Projecting the atomic surfaces attached to the lattice nodes 
of A’ onto EL is equivalent to copying U‘ at each node of LL. This projection defines a 
partition of EL into cells of fnite volume because LL is a discrete set of points. Also, 
infinitely many atomic surfaces project in EL exactly on top of each others: they generate 
translation orbits of equivalent atoms in E,,. 

The partition in EL being periodic, we can restrict ow attention to a single Wigner- 
Seitz cell of L I .  We designate by z the trace of E, in EL. The cut space hits the atomic 
surfaces attached to the lattice nodes of LL which are inside a prototypic atomic surface 
centred on z ,  which we denote by U; (see figure 8). 

Figure 8. The nodes of LI that project inside d in EL define 
completely the approximan1 periodic svUcluTe: each of these paints 
corresponds to a translation orbit of the real svUciure. 
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We call this (finite) set of nodes a 'structure pattem', say Pz: 

P, = {p E L1; p E U;). (25) 

This structure pattern defines the approximant periodic structure. The counting of the 
possible different structures associated to a given shear field consists in counting the number 
of cells of the partition inside the WignerSeitz cell of LI .  Each cell is Characteristic of a 
given structure pattem and therefore of a given structure. 

I 

(a) (b) 
Figure 9. A rational shear of A defines sublatices in Ell and EL: (a) in the direct space the 
sheared lattice A' is such that a sublauice LII is parallel to Eli and such that the orthogonal 
projection of A' onto EL is a sublattice LA: (b) in the reciprocal space, Li is the projection 
onto E; of A'* while L I  is parallel to ET. ~ 

, 

It is interesting to calculate the Fourier transform of the approximant structure within 
the standard formalism of quasicrystals. Indeed, owins to the fact that the projection of A' 
onto EL is a lattice ( L I )  and that Eli is parallel to a sublattice of A', say LII  (see fi,m 9). 
we deduce that the projection of A'' onto Ell' is the'(reciproca1) lattice Li; and that E,* 
is parallel to the sublattice L; of A"., The lattices L; and L; are the reciprocal lattices of 
respectively Lli and LL. Now, let q; be a node of 4. The structure form factor F(q;) is 
given by 

where the sum extends over all atomic sites x,! with atomic species j of form factor fj 
inside the unit cell of Lll. We observe that 4; is the projection of a node, say Q', of A'* 
modulo any translation of Lf. On the other hand,,.$ is the projection of a (unique) node 
<; of A', which, in turn, projects in E1 on a node cj of L1. Since Q' . c' = k E Z for 
every Q' E A" and I' E A', the scalar produck q; . x,! can equivalently be written as 
-4; . e,! where q; is the projection on E;. of Q modulo L; (adding any vector of Lf 
to Q' introduces an irrelevant integer value in the scalar product). We can then write the 
structure factor (26) as: 
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where 4; is the projection onto Ef of an arbitrarily chosen node of the set Q’+ L;. Using 
relations (20) and (21), we can express the structure factor of the approximant as a function 
of the parent quasicrystal components 811.6~ and Q, qL and the shear strain E,  as 

F(qll +‘E~L)  = fi ~ x P [ - ~ ~ w L  . (CL - &CII)I. (28) 
t - E B I E &  

This formula-which is trivially extended for the case of several atomic surfaces and 
atomic species-is the ‘discrete’ version of the standard Fourier transform of the window 
or acceptance function after a rational shear E in EL. It is very handy for numerical 
calculations of the structure form factors of approximants when starting from the parent 
quasicrystal data. Observe that the location z of the trace of Ec in EL appears in (27) only 
through the definition of the structure pattem in the summation. Hence, any variation in z 
that does not change Pz, leaves as requested, the structure form factor invariant. 

The boundaries of the cells correspond to translations of LL where one or several nodes 
of the structure pattem are on the boundary of U’. These cells correspond to the usual 
‘existence’ domains of finite configurations in a quasiperiodic structure, except that, here, 
each cell corresponds to an infinite periodic substructure. 

The relative size of the cells are no longer related to the frequency of the corresponding 
patterns. If one assumes that all these different periodic structures are thermodynamically 
equivalent, a possible physical interpretation of these relative sizes, is the following: during 
the transformation from the parent quasicrystal to crystal, nucleation occurs randomly in the 
sample corresponding to random location of the trace of E, into EL. Then, the relative sizes 
of the cells correspond to the volume fractions of the different approximant structures in the 
bulk specimen after complete transformation. The morphology of, the transformed material 
is an intricate mixture of several different crystalline structures: it would exhibit not only 
orientational ‘twins’ as in standard group/subgroup transformations but also heterophase 
boundaries, all with a high degree of coherence. These structures share a common skeleton 
of sites which is reminiscent of ‘merohedral’ twins in standard crystallography although 
they (generally) do not share a common lattice. It would be very interesting to check if 
the micro-crystalline state(s) [26,37], often observed in the transition from quasicrystal to 
crystal, is indeed a mixture of microdomains of different structures and not only a fine 
intrication of microtwinned crystals of a single phase. 

Let us now study the symmetry properties of these structures. The procedure described 
in the previous sections, based on elementary geometry, is independent of the description 
of the atomic surfaces: it prescribes what point symmetry the translation group should have 
but it does not predict the actual symmetry of the periodic approximant. Considering one 
given cell, we observe the following symmetry properties. 

’ 

(i) Any two z and z’ falling in the same cell defines the same structure. 
(ii) Any two z and z’ falling in cells differing by a non-zero translation of LL define 

two identical structures shifted by a (non-primitive) translation in Ell. 
(iii) Any (point) symmetry operation of H ,  leaving simultaneously invariant U’ and 

the cell is a symmetry operation of the structure; it is moreover a pure symmetry element 
(reducible) since at least one translation orbit of points of the structure is left invariant 

(iv) Any (point) symmetry operation of X, leaving simultaneously invariant U’ and the 
cell modulo a non-zero translation of LL, is also a symmetry operation of the structure; this 
symmetry operation is not necessarily reducible and can possibly correspond to a glide (or 
screw) symmetry element of the structure. 

From these considerations, we find that, in the generic case, a periodic structure 
generated by a projector of a H-stratum will have a lower point symmetry than H although 
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the lattice itself Lu has indeed 'H point symmetry. The actual space group of the structure 
generated by one given cell in EL is obtained by collecting the hyperspace symmetry 
elements of A' which leave invariant simultaneously a' and the cell modulo any translation 
of LL. 

4.2. Cell decomposition 

We now consider the special case of parent quasicrystalline structures which can be described 
by atomic surfaces obtained by union or intersection of the prototypic atomic surface of the 
canonical tiling. This case is in practice very important since, so far, all the best known 
icosahedral and decagonal quasicrystals can indeed be satisfactorily described by atomic 
surfaces that are union or intersection of the corresponding canonical atomic snrfaces. 

The atomic surfaces of the parent quasicrystal are bounded by facets parallel to the 
facets of the projected unit cell of A' and are therefore traces of rational hyperplanes of A'. 
The construction of the cells for a periodic structure was first demonstrated by Duneau [38] 
in the case of a family of square approximants in the octagonal tiling. 

Let us translate a given structure pattem dong a direction nor& to a facet of the atomic 
surface(s). The structure pattern changes each time some points cross the facet. Two such 
events differ by a translation equal to the reticular distance of the hyperplane defining the 
facet. Performing this procedure for every facet of the atomic surface(s), we generate an 
Ll-periodic grid panern which is composed of all traces in EL of the reticular hyperplanes 
parallel to the facets of the atomic surface(s). Examination of the WiguerSeitz cell of this 
grid pattern leads to an exhaustive counting of the possible periodic structures. 

4.3. Example of the octago~nal tiling 

We exemplify the procedure with the octagonal tiling of the plane. As described in 
appendix A, the octagonal stratum splits into two~different square strata Corresponding 
to the two different orbits of mirrors inn 8". 

We first consider the stratum 4mlmz (see [38] and appendix A for details on the 
corresponding projectors). Periodic approximants are found for q5 = arctan(p/Zq&) 
where p and 4 are integers such that p 2  + 84' = n2 with n integer. Let us consider for 
instance the case p = 1, q = 6 which leads to a periodic stmcture with a square lattice in 
Ell with unit cell a = 3 + 2&. Figure 10 shows the corresponding cell decomposition in 
EL: there is only one generic periodic structure with symmetry m (not square!) represented, 
of course, by four orientational variants deduced from each other by a n/2 rotation. This 
square stratum has the remarkable property that all periodic approximants lead to the same 
cell decomposition (up to a scaling factor) with an unique generic cell. 

k t  us turn now to the second square stratum generated by 4m;m;. Here again periodic 
approximants are found for 4 = f(arctan(p/q) - n / 4 )  where p and q are integers such 
that p2 + g2 = nz with n integer. We choose. for example, the case p = 3, q = 4 .  The 

,cell decomposition gives a giid pattern built with two identical square lattices rotated with 
respect to each other: the node ( p .  q )  of the first lattice is superimposed to the node (q,  p )  
of the other one. In this example, we recognize in figure 11 five cells corresponding to five 
different structures. 

Only one of these structures has 4mm point symmetry (p4gm) as shown in figure 12. 
The corresponding cell is an octagon centred on the special point (l/Z, 1/2) of L l .  Contrary 
to the previous case, changing the order of the approximant changes the number of different 
structures: this number increases with the order of the approximant. 

These two examples illustrate the various possible situations encountered in the counting 
of periodic approximant structures of quasicrystals.  in^ general, a periodic approximant has 
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Figure 10. Example of a generic periodic structure of the ‘square’ smtum 4mlm2: (a) the cell 
demmposition in EL shows an unique cell, the broken region (only a few cells are represented 
here), which has only a (pure) minor symmetry as shown on (b); the structure has space group 
cm. 

Figure 11. Generic periodic sIruUures of the ’square’ stratum 4m;m;: (a) thecell decomposition 
in EL shows five cells (irrespective of orientational variants). compouding ta five different 
s h u c t w  as shown in (b). Observe that. here, nonsymmorphic space groups are obtained. Only 
one of these five shuctures, whose cell is an octagon centred at the centre of the unit square, 
has point group 4”. 

a strictly lower point symmetry than its lattice. ?he full symmetry is recovered only around 
some special points of LI (like (l/Z, 1/2) in the previous example). In many cases, as 
illustrated by the 4mlmz stratum, these special points are. located at the intersections of cell 
boundaries. They correspond to ‘degenerate’ periodic shuctures as will be discussed in the 
next subsection. 

4.4. ‘Degenerate’ periodic structures 

An experimental fact is that all presently known approximant structures exhibit a rather 
high symmetry: the ‘cubic’ approximants of the ternary systems (AI, Mn, Si) or (Al. Li, Cu) 
have the largest point group m4 compatible with the icosahedral group; similarly, diffraction 
experiments and high resolution imaging of the ‘rhombohedral’ approximant of the ternary 
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Figure 12. The unique ‘square’ smcture of the stratum 4m;m; with space group p4gm and its 
corresponding cell (only four such cells, in gray, are drawn for c b t y )  in EL. 

system (AI, Cu, Fe) are consistent with the holohedral trigonal symmetry 3m. This suggests 
that the atomic surfaces of the parent quasicrystal have some particular properties to enforce 
the cut space to ‘lock-in’ at some high symmetry points of A in order to preserve the 
highest possible symmetry consistent with the 3D lattice. This, as shown in the preceding 
subsection, predicts that,the special points of Ll, in the vicinity of which high symmetry 
periodic approximant are to be found, are privileged locations of the trace of Ell. But these 
are precisely the points where the cell boundaries are most likely to cross: most of these 
high symmetry periodic approximants would correspond to periodic ‘degenerate’ structures. 
We designate these points as ‘symmetry dictated lock-in points’. 

A plausible explanation of this preferential ‘lock-in’ is to assume that these high 
symmetry phases are stabilized through a specific configurational entropy conhibution. 

Indeed, consider two parallel cuts whose traces in EL fall in two cells adjacent to a 
common boundary. Passing from one to the other generates a collection of flips for one 
or several translation orbits of the structures. These two structures share a large number of 
atomic positions and differ only by those positions, which we call the ‘critical flips’, whose 
images in EL are the points of A‘ located at the periphery of U’ and which move in~and 
out of U’. A substantial increase in configurational entropy can be gained by assuming that 
these critical flip positions occur with equal probability so that the two structures collapse 
into one unique average structure which we call a ‘degenerate’ structure. Since, in this 
crude picture, we have neglected the possible interactions between critical flips, the average 
structure mimics a kind of ‘local random tiling’ model where the atomic flip positions 
are & one or the other states with equal probability. We can repeat the same process by 
introducing equal occupation probability to new critical flip sites corresponding to new cell 
boundaries until we exhaust all the cell boundaries crossing at a single high symmetry point 
of LA. At each step, we proceed to an averaging on a family of critical flips and therefore 
increase the configurational entropy. 

The process is illustrated in figure 13 where the ‘square’ point symmetry of an octagonal 
approximant is recovered~by averaging the critical flip positions with equal probability. 

All approximants of the H-stratum can be seen as ordered decorations of these high 
symmetry degenerate phases: they share a skeleton of ‘stable’ points and differ only in the 
choice of ordering one or several families of critical flips, as exemplified in figure 14 for the 
case~of the square stratum 4mlm2 of the octagonal tiling (the critical flips positions in this 
case have occupancy numbers 112 or 318 according to their corresponding locations (edge 
or vertex) in EL). 

This leads us to propose the following conjecture: the ‘thermally averaged’ periodic 
structures obtainedafer a given perpendicular shear of A characterizing the phose transition 
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( 4  (e) 
Figure 13. The complete family of periodic appmximants belonging to the square symmetry 
4m1mz: there axe five different sUucIum (irrespective of orientational variants) labelled from 
(a) to (e), and Iheir corresponding lock-in points in EL. The critical flip positions axe drawn 
with light broken lines. The square symmetry is recovered only at the two special points (0.0) 
(struuure (a)) and (1/2,1/2) (structure (e)) of the elementary domain of LL. 

from quasicrystal to crystal, are those that m i m i z e  the number of nodes of A’ projecting 
on the vertices, the edges and the facets on the atomic su@aces U’ in EL. This ConjecNre 
is indeed very natural in the context of quasicrystals where atom flips contribute to the 
entropy of the structure. What we add here, is that another good way to maximize entropy 
for approximants within a given point symmetry StraNm is to ‘lock-in’ the physical space 
at some particular points of EL. These approximants are periodic only in average; a well 
defined fraction of their atomic sites (Wyckoff positions) should have fractional occupancy 
factors when described in a mean-field type approach. We may expect to be able to directly 
observe these critical positions in the details of the contrasts of the HREM images [39]. 

Such a conjecture is so far well supported by the presently known approximants in 
icosahedral and decagonal phases. For example, there are two major approximants of the 
icosahedral phases: a cubic m? phase (or-phase in the (Al, Mn, Si) system and R-phase in the 
(AI, Li, Cu) system) and a rhombohedral Sm phase (in (AI, Cu, Fe) system). Assuming that 
these icosahedral structures can be described by atomic surfaces bounded by twofold planes 
in EL, we arrive at the conclusion that these high symmetry approximant phases should 



Geometry of approximnt structures in quasicrystals 9119 

correspond to ‘degenerate’ structures with some of their atomic positions being only partially 
occupied in average, corresponding to a cut located in EL at one of the ‘symmetry dictated 
lock-in points’ of L I .  After the transition is completed at high temperature, successive 
collective ordering in the critical flip planes (or worms) may appear during the cooling, 
leading possibly to a microcrystalline morphology. An interesting side effect of this scheme 
is that periodic approximants would be as good candidates as quasicrystals for studying atom 
flip dynamics. 
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Appendix A. Appmximants in octagonal tiling 

The octagonal tiling can be generated from a simple lattice in a 4D space. It is an excellent 
example for illushating the projector technique described in the body of the paper. Here, 
we will start from the ‘ideal’ octagonal tiling and derive the strata corresponding to square 
and rectangle symmetries. We restrict our attention to projectors with trace 2. 

It is easily seen that the high symmetry point group 8mm contains two (non-conjugate) 
square groups, say 4mlm2 and 4m;m;, each in turn generating two rectangle groups, 
respectively (m,, mz} and (mi, m;]. The point group 8mm is generated by the two 
reflections ml and mi defined by 

m l o  0 -1 0 I ml= 

A general orthogonal projector is written as 

The commutation relations with ml and mi leads to the projector of the octagonal tiling: 

1 a O - a  
l a  0 

(W 
3r 

cos -. with a = - = 1 
4 4 

-a 0 a 
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AI. Elings with square symmetry 

There are two types of tilings with square symmetry, depending on which subset of mirrors 
( (ml ,mz]  or [m:,mi]) is retained. Both subsets correspond to projectors with one free 
parameter (noted here 9). The first subset (associated to the point group 4mlmz) is 
characterized by the generic projector 

l + a  b 0 -b 
0 ) with { a  =sin29 

(-44) 
b 1 - a  b 

-b 0 b I - a  
b l + a  b b = % c o s %  

whereas the second subset corresponds to the projector 

/ 1 a 0 -b\ 

\-b 0 a 1 1  

In both cases, the octagonal projector corresponds to rp = 0. The complementary 
projector I - R is obtained by changing p into (0 + ai2 2D periodic approximants with 
lattice parameter a are defined for 

where p,  q, n E Z. 

A2. Elings with rectangle symmetry 

Each previous family with square symmetry splits into two families of tilings with rectangle 
symmehy depending on which mirror is retained. These families depend on two free 
parameters noted rp and 8. Here are the four generic projectors corresponding to each of 
them. 

(i) From 4mlm2: 

:b 1 l + a  b 0 
b I - c  d 

-b e d 1 - c  
l + c  b e 

b I - Q  b 

d 1 + f  d 
%, = 1 ( 

2 0  

d 1 - f  
b l + c  d 

-d 0 

with 

1 a = sin& 

d = 3 cos28 

b = -cos2rp c = i(sin2rp + sin28) 

f = sin=. 
(AS) 

Jz 
I e = i(sin2rp - sin 28) 
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The square stratum corresponds to 6 = (p. The octagonal stratum corresponds to 8 = (o = 0. 
(ii) From 4m;m;: 

l + c  a 
a l + c  b 

-d b 
-b d a 1 - c  
l + d  a C 

a , I - d  b 

a l + d  
X 4  = -' b 1 - d  a 

-b c 

with 

a = cos 28 cos(2q + $) 
c = sin28 sin(2p + $) 

b = cos 26 sin(2V + 4)  
d = sin28 cos(2(o + 5). 

The square stratum corresponds to 8 = 0. The octagonal stratum corresponds to 
6 = v = O .  

Appendix B. Shear matrices for icosahedral quasicrystals 

We give in this appendix the general expressions of the E matrices for the three cases of 
maximum subgroups Sm, m5 and j m  of the m% icosahedral group. 

BI. Pentagonal stratum 

The pentagonal stratum 5m depends on one continuous parameter p. The general projector 
can be written as 

l a  b b b b -b\ 
b c d e d  f 
b d c d e  

b d e e c  
- b f f g g  

z3m(9)=& 1 b e d c e i] 
with 

a = &(1 +sin2(o) 

d =(&-sin2p)/& e=-(&+sin2p)/& (B2) 
f = (A+ sinZ(o)/& 

b = cos2p c = (5 - sin2(o)/& 

g = -(A - sin2(o)/&. 

A convenient basis for Ell and EL consists in'choosing the x axis along the fivefold direction 
and the y and z axes along a twofold direction and a mirror perpendicular to this twofold 
in both spaces: 

1 
ell = -{A, 1, 1 .1 .1 ,  - 1 )  " m  
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In that setting, the cut space E, is defined by e; = eJ! and e,C = e! and 

e:(q) =+.&I+ s i n 2 ~ ) , c o s ~ ~ , c o s ~ ~ , c o s ~ ,  c o s ~ q ,  - c o s ~ p )  ( ~ 4 )  

with 01 = 1 /JlO(l + sin2p). The shear matrix E takes then the simple form 

In the standard setting [40], this matrix transforms by (23) into 

B2. Cubic stratum 

The cubic stratum m4 depends also on a unique continuous parameter 9. The general cubic 
projector can be written as 

& a  a b a - a  
a f i a - a b  a 

(B7) 
1 a a f i a - a  

Ir,j(V) = - 

with a = cos29 - 4 sin29 and b = C O S ~ Y ,  + 2sin2p. We choose the cubic bases defined 
by 

e.! =nU,r ,0 , -1 , r ,01  e" =n{r,O, 1,s,O, -1) e$ =n{O, 1,r,0, - 1 ~ 1  

e: = n{-r. LO, r,  LO) e: = n { ~ ,  0, -5, I ,  0, r )  (B8) 
Y 

e: = n { ~ ,  --t, 1 .0 ,~ .  1) 

with n = 1 /J-. 
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For the cubic stratum these vectors transform into 

e," = n, Pa, &+ b, 0, -2a, &+ b,O] 
e; = np bh+ b, O , k ,  &+ b, 0. -2a] 

e: = n, {O, k, & + b, 0, -2a, A+ b]  

, from which we derive the shear matrix 

B3. Trigonal stratum 

The trigonal stratum 4m depends on two continuous parameters (o and 8. The general 
projector can be written as 

f i + a  b b C C 

b 8 + a  b d c 
b b &+a C d 

d c 3 - a  -d 
C C d -b & - a  -b 
d C C -b -b 3 - a  

-b (B11) qm((o. 8)  = - 
C 

where 

a = ~ ( 2 c o s ~ q - s i n ~ q - ~ c o s ~ - ~ s i n ~ ~  

b = $cos2q -sin2(o+cos2e+2sin2e) 

c = $(cos 2rp + 2sin 29 + 2 ~ 0 s ~  - s i n ~ e )  

d = ;(cosZq + 2sin2q- 4 ~ 0 ~ 2 8  + 2sin28). 

We choose the bases of En and EL as a threefold direction of type (1, 1, 1) for x and 
a twofold direction for y, the z direction being orthogonal to both x and y belongs to a 
mirror: 

1 
{-1,2, -1,q.c - 1). 1 - t, 1 - 7 ) .  e: = d m  
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For the trigonal stratum these vectors transform into 

with 

t, = 2cos29 - sin 29 

to = 2cos29 - sin28 

U; = 2 sin29 +cos 29 

ug = 2sin20 +cos29 
(B 15) 

from which we derive the shear matrix 

which, in the standard orthogonal bases, leads to 

a b c  
e- - -  c a b 
3 m - ' ( b  c a )  

with 

a = 2 tan9 + tan0 
b = 2tan9+(1-3r)tanB 
~ = 2 t a n r p + ( 3 ~ - 2 ) t a n 9 .  
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